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This paper represents a comparative assessment of network cost and performance
under time-dependent system optimal (SO) and user equilibrium (UE) assignment patterns,
with particular reference to the effectiveness of Advanced Traveler Information Systems
(ATIS). Both SO and UE solutions are found using a new simulation-based algorithm for
the time-dependent assignment problem. Experiments are conducted using a test network
with signal controlled junctions under progressively increasing network loading intensities.
A diagnosis of system performance for various intensities of loading is effected using
network-level traffic descriptors, for both system optimal and user equilibrium
assignments.

The results affirm the validity of a meaningful demarcation between system optimal
and user equilibrium assignments in urban traffic networks, and provide useful insights for
macroscopic network-level relations among traffic descriptors. This suggests that ATIS
information supply strategies based on system optimal route guidance could considerably
outperform descriptive non-cooperative information strategies, especially at moderate to
high congestion levels in the network. The results also illustrate the time-dependent nature
of the gains achieved by a system optimal assignment vis-a-vis a user equilibrium
assignment in a congested traffic network.



1. Introduction

1.1  Motivation and Problem Statement

Approaches incorporating advances in communication technologies, information
processing systems, electronics and automation, broadly labeled as Intelligent Vehicle
Highway Systems (IVHS), continue to generate considerable interest for their potential to
alleviate urban and suburban congestion of traffic systems. Advanced Traveler
Information Systems (ATIS) provide travelers with real-time information on existing
traffic conditions and/or instructions on route selection from their current location to their
destinations. Successful implementation of ATIS, especially at high market penetration
levels, involves the dynamic assignment of vehicles to "optimal" paths to reduce overall
system user costs. Recently, Mahmassani and Peeta [1, 2] proposed a heuristic algorithm
to solve the system optimal dynamic traffic assignment problem for the ATIS context,
where a central controller with known or predicted time-dependent origin-destination (O-
D) trip desires over the horizon of interest solves for paths to prescribe to users in order to
attain some system-wide objectives. A comprehensive review and discussion of dynamic
assignment and traffic simulation models for ATIS/ATMS applications are given in
Mahmassani et al. [3].

In this paper, we analyze the performance of a traffic network employing this
solution methodology for both system optimal and user equilibrium time-dependent
assignments. As in the static case, system optimal and user equilibrium dynamic
assignments involve similar algorithmic steps, differing primarily in the specification of
path travel costs that form the basis of the corresponding assignments. System optimal
(SO) dynamic assignment is accomplished using time-dependent marginal travel times
(see Ghali and Smith [4]), whereas a user equilibrium (UE) assignment is attained using
the time-dependent average travel times. We analyze the system performance under the
above assignment schemes for different intensities of network loading covering the
spectrum of network states from uncongested networks to. very highly congested
networks. In addition, the numerical experiments illustrate the extent of the differences
between SO and UE time-dependent assignments in terms of total system cost, at varying
levels of network congestion. This question is of fundamental importance to ATIS
operations, with regard to the relative benefits of normative versus descriptive
information supply strategies.

A system optimal assignment does not generally represent an equilibrium flow
pattern because some users may be able to obtain individual advantages simply by
changing routes, though imposing a greater marginal cost to other users in the system in
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the process. Its significance to the ATIS context lies in providing a benchmark against
which other assignments or flow patterns can be gauged, thereby yielding an upper bound
on the benefits attainable with real-time traffic information. A Wardrop UE holds when
no user can improve his/her individual cost by unilateral route switching. There is no
empirical evidence that UE conditions actually hold in real networks, though the UE
solution is considered a reasonable and useful construct for the evaluation of long-term
capacity improvements. Under real-time descriptive ATIS information on network
conditions, a time-dependent UE pattern could be viewed as the result of the long-term
evolution of the system, as users somehow learn and adjust under the supplied
information. However, it is not at all clear that such convergence would be attained under
inherently dynamic conditions (exacerbated by supplying information to users). Thus it is
not known what the UE solution may represent from the standpoint of ATIS operation
and evaluation. Actual user behavior and system performance under real-time descriptive
information may be better or worse than the corresponding time-dependent UE solution
in terms of the overall system cost. Nevertheless, a time-dependent UE pattern may be
considered as a useful proxy for a favorable scenario of long-term network performance
under real-time descriptive information.

It is known from static network equilibrium theory that SO and UE lead to
identical solutions only for situations where the shortest paths taken by users are
simultaneously the best paths from a system viewpoint. Such situations are observed
when networks are relatively uncongested so that link operating speeds are unaffected by
the flows on the links (limited vehicle interactions). At the other extreme, under very
highly congested conditions, system performance is not likely to be markedly different
under the two assignment schemes because the opportunities for SO to sufficiently
ameliorate the traffic situation would probably be limited.

For network conditions between the two extremes, the extent of the differences
between SO and UE solutions, particularly in terms of overall system cost, are not
known. This is very important for ATIS, because if the two solutions are not perceptibly
different, coordinated cooperative SO route guidance imposed by a central controller may
not be necessary, and less complicated and simpler to implement descriptive information
to non-cooperating drivers may be sufficient. If this were the case, there would be
important implications for the focus that ATIS information supply strategies should take,
with more attention directed to ways of guiding the system towards UE convergence and
away from wide fluctuations. However, if SO indeed holds promise for meaningful gains
over UE, then normative route guidance and/or strategies to induce the system near its SO
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should be pursued. Of course, it is also desirable to ascertain network and traffic
conditions under which differences between SO and UE are meaningful.

In this paper, overall user cost and network performance under time-dependent
SO and UE assignment patterns are examined in a series of numerical experiments
performed on a test network under different loading levels. The system performance is
gauged using average network level traffic flow descriptors, in addition to the standard
parameters like average travel time. The time-dependent nature of the problem further
complicates the already intricate problem of characterizing traffic flow performance at
the network level, previously addressed only under steady-state conditions, as discussed
hereafter.

1.2 Network Traffic Flow Theory

Mahmassani, Williams and Herman (5, 6] generalized the definitions of speed,
flow and concentration to the network level and examined their interrelation in their
model of network traffic performance. These concepts are extended to the dynamic case
in the current analysis, in order to characterize the vastly varying network traffic
conditions (especially for medium to high network loading levels) during the peak period.
Average network speed V (mph) is obtained as the ratio of total vehicle-miles to total
vehicle-hours in the network over the duration of interest. The average network
concentration K (vehicles per lane-mile), for the duration of interest, is the time average
of the number of vehicles per unit lane-length in the system. However, the concentration
varies dramatically with time in dynamic traffic networks. Hence, the time-dependent
network concentration is examined by taking 5-min averages of number of vehicles per
unit lane-length in the system. An overall measure of network concentration K over the
duration of the period of interest is obtained by taking the arithmetic average of the 5-min
averages. Similarly, time-dependent network flow, interpreted as the average number of
vehicles per unit time that pass through a random point along the network, is examined
by taking 5-min averages; an overall measure of network flow Q over the peak period is
obtained by taking the simple average of (£ l; q; ) / (£ 1; ), where qj and ]; respectively
denote the 5-min average flow and the length of link i, and the summations are taken over
all network links.

Two fundamental relationships between these three network traffic flow variables
are investigated in this study. The first relates average network speed, V, and average
network concentration, K. For arterials or single roadways, a qualitative trend of
decreasing speed with increasing concentration is well established. The same general
trend was observed to hold at the network level in the simulation experiments of
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Mahmassani et al. [6], though the complexity of network interactions preclude the
analytic derivation of such a relation directly from the link-level relations. The second
relationship analyzed is the basic identity Q = KV. Formally established for single
roadways, it was shown to also hold at the network level in the previously mentioned
steady-state experiments [6]. These experiments were performed keeping the network
concentration level constant for the duration of interest by treating the network as a
closed system. The NETSIM package was used for the study and vehicular behavior was
governed by the comprehensive microscopic rules embedded in NETSIM. The present
study replicates the network traffic conditions of a rush hour traffic situation. It uses the
DYNASMART (DYnamic Network Assignment Simulation Model for Advanced Road
Telematics) simulation-assignment model developed at The University of Texas at Austin
for ATIS/ATMS applications. The Q = KV identity is expected to hold only
approximately for'time-varying network traffic flow.

This paper is organized as follows. The next section gives a brief summary of our
solution methodology for the SO and UE problems. This is followed by a description of
the experimental set-up, including the characteristics of the test network and traffic
loading patterns. The results are then discussed, followed by concluding comments in the

final section.
2. Solution Methodology

2.1  Problem Statement

Consider a traffic network represented by a directed graph G(N, A) where N is the
set of nodes and A the set of directed arcs. A node can represent a trip origin, a
destination and/or a junction of physical links. We consider a network with multiple
origins and destinations. The time experienced by a vehicle to traverse a given link
depends on the interactions taking place among vehicles in the traffic stream along this
arc. The analysis period of interest, taken here as the peak period, is discretized into small

equal intervals t = 1,.......... , T. Given a set of time-dependent O-D vehicle trip desires for
the entire duration of the peak period, expressed as the number of vehicle trips rjj¢ leaving

node i for node j in time slice t, Vi,je Nandt=1,.......... , T, determine a time-dependent
assignment of vehicles to network paths and corresponding arcs. In other words, find the
number of vehicles rgt that follow path k = 1,......... , Kjj between i and j at time t, Vije

Nandt=1,........ , T, as well as the associated numbers of vehicles on eacharcl € A

over time. As explained in the previous section, two such assignments are computed: 1)
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one that satisfies UE conditions that no user can improve his actual (experienced) trip
time by unilaterally changing routes, and 2) a SO assignment that minimizes total travel
time (for all users) in the system over the peak period. The interpretation of these two
solutions from the standpoint of ATIS effectiveness was discussed in the previous
section.

2.2  Simulation-Assignment Solution Procedure

This section describes briefly the algorithm used to solve for SO and UE
assignments. A detailed description of the solution procedure is provided in Mahmassani
and Peeta [1, 2]. It consists of a heuristic iterative procedure in which a special-purpose
traffic simulation model is used to represent the traffic interactions in the network, and
thereby evaluate the performance of the system under a given assignment. As indicated
earlier, the algorithmic steps for UE assignment are virtually identical to those for the SO
solution except for the specification of the appropriate arc costs and the resulting path
processing component of the rflcthodology. The algorithm is first summarized for the SO
case, followed by a brief description of the modification for the UE problem. '

The use of a traffic simulation model to evaluate the SO objective function and
model system performance circumvents the principal difficulties that have precluded
solutions to realistic formulations of the problem, by obviating the need for link
performance functions, link exit functions and implicitly ensuring that the first-in, first-
out property holds on traffic facilities and that no unintended holding back of traffic takes
place at nodes (see Mahmassani et al. [3] for a discussion of issues arising in dynamic
traffic assignment). The algorithm uses the DYNASMART simulation-assignment
model. DYNASMART has the capability to simulate the movement of individual
vehicles through the network, with path selection decisions possible at every node or
decision point along the way to the destination, as supplied by the user decision rules
reflecting driver behavior in response to real-time information. In this work, vehicular
paths are pre-assigned exogenously to DYNASMART, as determined by the steps of the
SO or UE solution algorithms. Thus DYNASMART is used primarily as a simulator to
replicate the dynamics of traffic phenomena in response to a given assignment of vehicles
to paths. A detailed description of the various capabilities of DYNASMART is provided
in Mahmassani et al. [7].

The simulation results provide the basis for a direction finding mechanism in the
search process embodied in the solution algorithm for this nonlinear problem. The
experienced vehicular trip times from current simulation are used to obtain a descent
direction for the next iteration. The time-dependent shortest travel time paths and least
marginal travel time paths are obtained using the time-dependent algorithms described in
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Ziliaskopoulos and Mahmassani [8]. An elegant aspect of the solution methodology is
that it avoids complete path enumeration between O-D pairs.

Flow Chart 1 depicts the solution algorithm for the system optimal dynamic
traffic assignment problem. A brief summary of the approach is as follows:

1. Set the iteration counter I = 0. Obtain the time-dependent historical paths (paths
obtained from database) for each assignment time step over the entire duration for which
assignment is sought.

2. Assign the O-D desires (which are known a priori for the entire peak period) for the
entire duration to the given paths and simulate the traffic patterns that results from the
assignment using DYNASMART.

3. Compute the marginal travel times on links using time-dependent experienced or
estimated link travel times and the number of vehicles on links obtained as post-
simulation data (from step 2).

4. Using a special-purpose time-dependent least cost path algorithm, compute the least
marginal time paths for each O-D pair for each assignment time step based on the
marginal travel times obtained in step 3.

5. Perform an all-or-nothing assignment of O-D desires to the least marginal time paths
computed in the previous step. The result is a set of auxiliary path vehicle numbers for
each O-D pair for each assignment time step t = 1,............ 3

6. Update paths and the number of users assigned to those paths. Update of paths is done
by checking if the path identified in step 4 already exists (i.e., has carried vehicles in at
least one prior iteration) for that O-D pair and including it if it does not. The update of the
number of vehicles (assignment of vehicles to the various paths currently defined
between the O-D pair after the path update) is performed using the Method of Successive
Averages (MSA), which takes a convex combination of the current path and
corresponding auxiliary path numbers of vehicles, for each O-D pair and each time step.
A detailed description of MSA is provided in Sheffi and Powell [9]. Note that other
convex combination schemes could equally be used.

7. Check for convergence using an € -convergence criterion.

8. If convergence criterion is satisfied, stop the program. Otherwise, update the iteration
counter I =I + 1 and go to step 2 with the updated data on paths and the number of
vehicles assigned to each of those paths.

The complexity of the interactions captured by the simulator when evaluating the
objective function generally preclllde the kind of well-behaved properties required to
guarantee convergence of the algorithm in all cases. However, such convergence was
achieved in all the experiments reported in this paper, and in many other test networks
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solved to date. Also, path marginals are not necessarily global as they are based on link
level marginal travel times. Efforts were made to attain a global optimum where local
solutions were suspected.
2.3  Modification to obtain User Equilibrium Solution

As previously discussed, the solution to the time-dependent UE problem is
obtained by assigning vehicles to the shortest average travel time paths instead of the
least marginal paths in the direction finding step (step 5). In other words, use the (time-
dependent) average travel times on links instead of the marginal travel times in the
shortest path calculations. In the above solution procedure, this simplifies step 3 and

modifies step 4 as indicated.
-, & Experimental Design and Set-up

This section first details the network configuration and traffic characteristics of
the test network used in this study. This is followed by an illustration of the experimental
set-up.

3.1 Network Configuration and Traffic Characteristics

The test network used in this study consists of a freeway with a street network on
both sides as shown in Figure 1. It has 50 nodes and 163 links. Nodes within the freeway
section are neither origin nor destination nodes. 38 origin nodes and 38 destination nodes
are obtained by excluding freeway nodes (nodes 1-37 and 44). Freeway nodes are
connected to the street network through entrance and exit ramps. Unless otherwise
indicated in Figure 1, all arcs shown are two-directional. All links are 0.5 miles long and
have two lanes in each direction except for the entrance and exit ramps which are directed
arcs with a single lane. The freeway links have a mean free speed of 55 mph and the other
links have a 30 mph mean free speed. In terms of traffic signal characteristics, 25
intersections have pre-timed signal control, 8§ have actuated signal control and the
remaining 17 nodes have no signal control.

3.2  Experimental Set-up

The comparative assessment of system performance for system optimal and user
equilibrium assignments is conducted under different network loading levels, which
generate different levels of network congestion. We define the network loading factor as
the ratio of the total number of vehicles generated in the network during the assignment
period to a given reference number (19403 vehicles over a 35-minute period in our
experiments). Table 1 shows the different loading factors considered in this study, and the
corresponding number of vehicles generated on the test network during the duration of
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interest (35 minutes in all cases). In addition, it shows the corresponding number of
"tagged" vehicles (vehicles generated for the 30 minute duration after the 5 minute start-
up time) for which relevant performance statistics are accumulated. The loading factors
range from 0.6 (very low congestion with 11616 vehicles) to 2.4 (extremely high
congestion with 46674 vehicles). Under each loading level, the UE and SO solutions are
obtained, and the resulting time-dependent link flow patterns are obtained from
DYNASMART. Figure 2 shows a sample time-dependent loading pattern for a loading
factor of 2.0. The indicated points on the graph correspond to the number of vehicles
generated in the 5-minute interval centered on the location of each point; the lines
connecting the points are physically meaningless and are included only for visual
convenience. The shape of the loading curve for other network loading levels is
approximately the same, though appropriately scaled in magnitude. This temporal pattern
emulates real-world network loading for the peak period, with an initially increasing
generation rate until a peak is reached, followed by a decreasing vehicle generation rate.
In the present study, a start-up time of 5 minutes is provided in DYNASMART
for the network to be reasonably occupied, followed by a 30 minute peak period
generation of traffic (for whom performance statistics are accumulated). Another aspect
of the experimental set-up which critically influences the system performance is the
spatial distribution of the O-D demand pattern. The vehicles generated are about evenly
distributed spatially, both in terms of their origins and destinations, except for nodes 37
and 44 which generate/attract only about 25% the number of vehicles
originating/destinated to a typical origin/destination node (ie, nodes 1-36).

4, Results

The results from the various experiments are viewed from two principal
perspectives. First, they form the basis for comparison of system performance,
particularly user costs under UE and SO assignment schemes, thereby addressing the
questions relevant to ATIS information strategies described in the introductory section of
the paper. Secondly, they are used to investigate network level traffic flow characteristics
and relations using network-wide traffic descriptors. This investigation is conducted
primarily for the SO flow pattern. An additional element of the study is the time-
dependent analysis of the travel time gains of SO over UE, also of significance to ATIS
operation.

The results provide several key insights from both of the above perspectives. They
manifest a clear qualitative and quantitative distinction in the solution provided by the SO
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assignment scheme as opposed to the time-dependent UE assignment procedure to route
vehicles in a general traffic network. The results also reveal important and robust
macroscopic relationships among network level traffic variables which parallel those for
single roadways.

Table 2 reports summary statistics on the system performance for the SO
assignment for the different loading factors. As expected, at low levels of network
loading, when the network is relatively uncongested, the average travel times of vehicles
in the network are relatively close across the different loading levels. As the load is
increased, the effects of congestion become more prominent and the average travel times
in the network increase at an increasing rate with the loading factor. At very high loading
levels, the marginal effect of additional demand on system performance is very high. The
results also indicate that there is only limited variation in the average distance traveled by
vehicles under the various network loading levels, implying that greater congestion and
not longer travel routes is the primary cause of the hi ghér system trip times (the objective
function seeks to minimize total system travel time only). Nevertheless, the average travel
distance does increase with the loading level, reflecting an increasing percentage (though
small in magnitude) of drivers assigned to longer travel routes.

Table 3 presents similar summary statistics for the UE assignment. The trends are
similar to those described above for the SO case. The average travel distances under UE
for various network loading levels are smaller than the corresponding distances for SO,
indicating a smaller percentage of long travel routes under UE. This may be explained by
some users being assigned to longer routes in order to reduce congestion elsewhere so as
to reduce systemwide travel times.

Figure 3 shows comparatively the average trip times under various network loads
for UE and SO assignments. As discussed above, both curves illustrate the increasing
marginal effects of additional demand on system trip times. Of more relevance to the
central question addressed in this paper, Figure 3 highlights the difference in the quality
of the solutions provided by the two assignment rules for time-dependent network flows.
This is further illustrated in Figure 4 which depicts the percentage improvement in
average travel time of SO over UE (as a fraction of the UE travel time) for the various
average network concentrations corresponding to the various levels of network loading.
At low loading levels, SO and UE provide essentially identical solutions. For loading
factors 0.6 and 0.8, SO shows improvements of 0.3% and 0.5% respectively over UE. At
such low concentration levels, average link speeds remain relatively unchanged due to
limited interactions among vehicles, and the marginal travel time on the link is essentially
identical to the average travel time, leading to almost identical solutions under the two
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assignment schemes. When network congestion increases slightly, to loading factors of
1.0 and 1.2, the corresponding SO trip time improvements are 3.0% and 4.5%,
respectively, over the UE solution. As the network becomes moderately congested,
system benefits under the SO assignment become more pronounced, with 10.6% and
11.2% improvements over UE for loading factors of 1.4 and 1.6 respectively. For heavily
loaded networks, very substantial gains are obtained, with 15.1% and 19.0%
improvements in system travel times using SO, for loading factors 1.8 and 2.0
respectively.

As the levels of network loading are increased further, the system reaches very
high levels of congestion that near gridlock, and overall network throughput drops,
making it increasingly difficult to discharge all vehicles from the system in a reasonable
amount of time. Under these conditions, the ability to improve overall conditions by re-
routing certain vehicles to paths with lower marginal costs diminishes, as all links
become highly congested. Thus, the advantage of an SO assignment relative to UE begins
decreasing, as reflected by reduced improvements of 12.4% and 10.7% for loading
factors of 2.1 and 2.2 respectively. The gains begin dropping rapidly beyond this point,
with higher loading levels eventually yielding negligible differences in the quality of the
solution provided by the two schemes.

Figure 5 represents the average trip time improvement per vehicle under SO
assignment for various levels of network loading. The results mirror the conclusions from
Figures 3 and 4. Of course, this improvement in trip time is not experienced uniformly by
all vehicles; in particular, it varies over the vehicle's time of departure during the peak
period. The dynamic nature of the travel time savings is examined below.

Figure 6 depicts the cumulative demand generation as a function of time under the
2.0 loading factor along with the cumulative discharge curves under the SO and UE
assignments. The various points on the plot are obtained by accumulating the statistics
available for each 5-minute intervals. The area on the plot between the two discharge
curves represents the time savings of SO over UE, in this case about 1438 hours. The
figure illustrates the time-dependent nature of the benefits generated by SO over UE.
When the network is in the early stages of loading (for about the first 20 minutes), it is
not sufficiently congested to produce meaningful differences between SO and UE
assignments. Most of the savings of SO are accrued between thirty and seventy minutes
into the peak period as the network is close to peak congestion levels. Beyond seventy
minutes, there appear to be virtually no significant gains of SO over UE as the network is
again relatively uncongested. Thus the benefits of route guidance based on SO

X
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assignment over UE routing are not accumulated uniformly over time — rather they are
gained when the network is relatively well congested.

Figure 7 depicts the time savings per vehicle for SO over UE as a function of the
vehicle's time of departure under different loading factors. To capture the time-
dependency of the benefits in a systematic manner, travel time savings are accumulated
based on the start times of the vehicles. In the figure, 0-5 on the y-axis (start time) refers
to all vehicles that start between zero and five minutes. Vehicles that start during the first
five minutes do not face congested conditions and hence SO does not yield savings over
UE for these vehicles. Vehicles that start during the intervals 10-15 and 15-20 minutes
accrue time savings at an increasing rate as the loading level increases. Over their trip,
these vehicles encounter significant congestion that increases with the loading factor. For
vehicles starting between 20 and 35 minutes, the benefits increase with network loading
at an increasing rate until the 2.0 loading factor level, and then dip down. This trend
illustrates the previously discussed tendency of diminished savings for SO under
extremely high congestion conditions .

The time-varying nature of the savings of SO relative to UE and its dependence
on the network load is further illustrated in Figure 8, which depicts two-dimensional plots
of savings as a function of departure time, with each plot corresponding to a different
loading factor. Figure 9 represents essentially similar information but in cumulative form.
At a loading factor of 1.2, benefits are just perceptible for vehicles which enter the
network during the latter half of the peak period as they face lightly congested conditions.
A clearer picture emerges for a loading factor of 1.6 where the network is moderately
congested for some duration. Vehicles departing in the first fifteen minutes do not
encounter sufficient congestion in the network to obtain significant benefits for a SO
assignment relative to UE. As congestion builds up, the SO assignment provides
substantial benefits, until a peak is obtained for vehicles starting between twenty and
twenty-five minutes. Vehicles generated beyond twenty-five minutes face decreasing
levels of congestion as vehicles continue to discharge from the network. Hence, benefits
begin diminishing for vehicles entering the network towards the end of the peak period.
At a loading factor of 2.0, the same general trend is observed as above, though it is more
marked because of the higher levels of congestion. Very high levels of congestion are
observed for some period of time for a loading factor of 2.2, leading to reduced relative
effectiveness of SO compared to UE for vehicles that face those congestion levels. This is
reflected in the sudden drop of savings for vehicles starting between twenty and thirty

minutes.
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Network Flow Relations

The second aspect investigated through the experimental results relates to the
macroscopic network level traffic theoretic relationships among network-wide traffic
descriptors for dynamic traffic networks under consideration. The pertinent traffic
variables and their averages over time and space were defined in the first section of the
paper. As noted, while mathematical relationships among traffic flow variables are
reasonably well established for arterials and intersections, the intricacies of interactions at
the network level preclude analytic derivability of network-wide traffic relationships from
the link-level traffic models. However, the simulation results extend the previous findings
of Mahmassani et al. [5, 6] that the basic trends captured by the single roadway
relationships seem to also hold at the network level for the dynamic case.

Figure 10 shows the average network speed and average trip time under different
network loading levels for the SO assignment. Both curves are smooth indicating
relatively robust performance characteristics at the network level, and clearly illustrating
the increasing marginal effect of additional demand on the system performance.

The network level speed-concentration relationship for the SO assignment is
depicted in Figure 11. Each point on the plot corresponds to a simulation run for the
whole assignment period under a particular loading level. The figure clearly illustrates
decreasing average network speed with increasing network concentration, paralleling the
K-V relationship for an individual roadway. Note that the plot has a point of inflection
corresponding approximately to the 1.8 loading factor. This qualitative trend has been
observed previously in the simulation experiments of Mahmassani et al. [5] on a regular
test network using the NETSIM package.

Table 4 examines the Q = KV relationship, which holds as an identity for a single
roadway. Results indicate that Q and KV differ by less than 5% for all cases, which is
well within the error introduced by the manner in which the time averages were
computed. As described in the first section, the average network flow and concentration
were calculated as an overall average of 5-minute averages, whereas the average network
speed was determined through quantities accumulated every 0.1 minute (length of a
simulation interval) of the simulation.

Figures 12 and 13 represent the network flow-concentration and speed-flow
relationships respectively. The plots indicate that the Q-K and V-Q relationships parallel
those for single roadways up to moderate levels of congestion, diverge for highly
congested network and become confluent for very high congestion levels.

An essential element to be noted in the network level analysis is the time-
dependent nature of the phenomena of interest. Averaging quantities like network flow
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and concentration over the duration of the peak period is likely to mask the time-
dependency of network performance. For example, overall network concentration is
obtained by averaging low levels of concentration at both ends of the peak period and
high levels in between, as shown in Figure 14 which depicts the time-dependent variation
of concentration (normalized by dividing by a jam concentration of 160 veh./lane-mile)
over the duration of interest. More detailed investigation of the interrelationships among
network level traffic descriptors over time will be reported elsewhere.

5. Concluding Comments

The experiments performed using the simulation-based algorithm to solve both
the SO and UE versions of the time-dependent traffic assignment problem have provided
insights of critical importance to the design of ATIS information supply strategies and
results of fundamental significance in the context of network assignment and network
traffic flow theories. Of course, experimental results from a single test network preclude
definitive generalizations; nevertheless, they proffer an illustration of the insights that can
be obtained on the basic constitution of the problems being addressed while suggesting
directions for future research. The first main conclusion is that the results suggest
meaningful differences in overall system cost and performance between time-dependent
system optimal and user equilibrium assignments. The second main conclusion is that
traffic networks under time-dependent traffic assignment patterns continue to operate
within the envelope of relatively simple network traffic flow relationships that exhibit
strong similarities to the traffic models established for individual road sections.

If we take the UE assignment results as somehow indicative of the situation that
might be attained over time in a system where drivers have access to real-time on-board
descriptive information through ATIS, the results of our experiments suggest that there is
considerable potential for system optimal, coordinated route guidance, especially in
heavily congested (though not oversaturated) networks. These results appear to contradict
unsupported claims that descriptive information would likely perform as well as
normative SO route guidance because UE system costs were claimed to be very close to
SO costs. Instead, they strengthen previous recommendations (e.g., in Mahmassani and
Jayakrishnan [10]) that coordinated information is necessary beyond a certain market
penetration level.

The results further highlight the dynamic nature of the benefits accumulated by a
SO assignment over UE. They suggest that SO is most effective when the traffic network
is moderately to highly congested. In the context of peak period traffic, this implies that
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most savings through SO assignment would be achieved not at the beginning nor end of
the peak period, but in a time range in between. When the network is lightly or very
highly congested (oversaturated), an SO assignment does not perform significantly better
than UE. For relatively uncongested traffic situations, SO and UE yield almost identical
solutions. :

Our future research on this topic will investigate the system performance under
partial user compliance when users are provided with "system optimal” paths, thereby
introducing an additional element of user behavior. With regard to the traffic network
flow theoretic aspects, avenues for future efforts in this area include in analyzing dynamic
traffic networks from the perspective of the two-fluid theory of town traffic developed by
Herman and Prigogine [11].

In conclusion, it is possible to characterize traffic flow in urban traffic systems
using relatively simple macroscopic relationships, which parallel traffic flow
relationships at the individual roadway level. It should be emphasized that simulation is
an abstract representation of real-world traffic, and thus the research is mostly
exploratory rather than definitive in nature. Results to date strongly suggest that the
performance of dynamic traffic networks is critically sensitive to network topology and

network loading pattern.
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Flow Chart 1. Solution Algorithm for the System Optimal
Dynamic Assignment Problem
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TABLE 1. Loading Factors and the Corresponding Numbers of Generated
Vehicles and Tagged Vehicles for the Numerical Experiments

Loading Factor No. of Generated Vehicles Tagged Vehicles
0.6 11616 10585
0.8 15509 14098
1.0 19403 17621
v 23305 21145
1.4 27196 24697
1.6 31090 28205
1.8 34978 31726
2.0 38871 35258
21 40818 37014
2 42769 38784
2.4 46674 42322

TABLE 2. Summary Statistics for System Optimal Assignment

Loading | Av. Trip | Total Trip Time | Average Trip Total Trip Average
Factor Time Distance Distance Speed
(minutes) (hours) (miles) (miles) (mph)
0.60 3.85 679.54 1.82 19257.75 28.34
0.80 3.90 916.05 1.81 25447.00 27.78
1.00 4.03 1183.06 1.82 22092.25 27.13
1.20 4.40 1549.48 1.84 38837.25 25.06
1.40 4.86 1999.10 1.85 45724.75 22.87
1.60 6.04 2837.07 1.92 54133.25 19.08
1.80 7.65 4042.91 1.97 62398.50 15.43
2.00 10.46 6149.46 1.99 70208.00 11.42
2.10 13.08 8071.91 2.01 74398.00 9.22
2.20 16.57 10710.93 1.99 77287.00 7.23
2.40 24.95 17601.78 213 89987.00 5.11
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TABLE 3. Summary Statistics for User Equilibrium Assignment

Loading | Av. Trip | Total Trip Time | Average Trip Total Trip Average
Factor Time Distance Distance Speed
(minutes) (hours) (miles) (miles) (mph)
0.60 3.86 681.52 1.80 19103.75 28.03
0.80 3.92 920.81 1.78 25139.00 27.30
1.00 4.15 1219.46 1.79 31593.75 2591
1.20 4.60 1622.47 1.81 38238.75 23.57
1.40 5.43 2236.52 1.80 44573.75 19.93
1.60 6.79 3192.16 1.85 52299.25 16.38
1.80 9.00 4762.95 1.88 59708.00 12.53
2.00 1291 7587.70 1.96 69149.50 9.11
2.10 1494 9215.69 1.93 71479.50 7.76
2.20 18.55 11993.56 1.99 77163.00 6.43
TABLE 4 Results of the Q, KV Comparison
LF K A% KV Q % Difference
veh/lane-mile miles/hr veh/lane-hr | veh/lane-hr | (KV-Q)/Q
0.6 6.31 28.34 178.83 173.41 3.1
0.8 8.35 27.78 231.96 224.56 3.30
1.0 10.63 27.13 288.39 278.42 3.58
12 14.02 25.06 351.34 337.94 3.97
1.4 17.30 22.87 395.65 378.70 4.48
1.6 22.37 19.08 426.82 408.78 4.41
1.8 23.94 15.43 369.39 35729 3.39
2.0 30.32 11.42 346.25 336.99 2.75
2.1 34.82 9.22 321.04 315.42 1.78
2.2 4295 7.22 310.10 303.12 2.30
2.4 5291 5.11 270.37 273.65 -1.20
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Figure 2.  Time-dependent Vehicle Generation (shown as 5-minute
aggregates) for Loading Factor 2.0
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Average Trip Time vs Network Load
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Figure 3. Comparison of Average Trip Times (minutes) of SO and UE
Assignments for Various Levels of Network Loading. The numbers by the
plotted points are the corresponding loading factors.
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Percentage Time Savings for SO over UE vs Network Concentration
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Figure 4. Percentage Total Trip Time Savings of SO over UE obtained as a
Fraction of Total UE Trip Time for Different Loading Factors versus Average
Network Concentration. The number by each plotted point is the corresponding
loading factor. '
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Figure 5. Trip Time Savings for SO over UE (in minutes/vehicle) as a
Function of Network Load (the savings are assumed to be equally distributed
among all the vehicles generated for that loading factor). The number by each
plotted point is the corresponding loading factor.
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Cumulative Network Flows
[Load Factor = 2.0, 38871 vehicles]
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Figure 6. Cumulative Generation Curve and SO and UE Cumulative
Discharge Curves for a Loading Factor of 2.0. The points on the curve represent
5 minute updates of the cumulative number of vehicles. The area between the
SO and UE discharge curves represents the time savings for SO over UE.
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System Optimal Time Savings
(Relative to User Equilibrium)
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Figure 7.  Trip Time Savings (of SO relative to UE) per Vehicle (in minutes)
as a Function of Loading Factor and Start Times (in minutes) of Vehicles
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Trip Time & Speed vs Network Load

(System Optimal Case)
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Figure 10. Average Network Speed (mph) and Average Trip Time (minutes)
for the System Optimal Case as a Function of Network Load (in number of
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Network Speed vs Network Concentration
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Figure 11. Average Network Speed V (mph) as a Function of Average
Network Concentration K (vehicles/lane-mile) for the System Optimal Case
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Network Flow vs Network Concentration
(Temporal and Spatial Average)
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Figure 12.  Average Network Flow Q (vehicles/lane-hour) as a Function of Average
Network Concentration K (vehicles/lane-mile) for the SO Case
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Figure 13.  Average Network Flow Q (vehicles/lane-hour) as a Function of Average
Network Speed (mph) for the SO Case
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Normalized Network Concentration vs Time
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Figure 14. Normalized Network Concentration (Network
Concentration as a Fraction of Network Jam Concentration) as a Function of

Time for Different Loading Factors



